BibBase http://fenway.cs.uml.edu/papers/pubs-all.bib
generated by bibbase.org
  2024 (9)
LocalTweets to LocalHealth: A Mental Health Surveillance Framework Based on Twitter Data. Deshpande, V.; Lee, M.; Yao, Z.; Zhang, Z.; Gibbons, J. B.; and Yu, H. March 2024. arXiv:2402.13452 [cs]
LocalTweets to LocalHealth: A Mental Health Surveillance Framework Based on Twitter Data [link]Paper   link   bibtex   abstract   1 download  
SYNFAC-EDIT: Synthetic Imitation Edit Feedback for Factual Alignment in Clinical Summarization. Mishra, P.; Yao, Z.; Vashisht, P.; Ouyang, F.; Wang, B.; Mody, V. D.; and Yu, H. April 2024. arXiv:2402.13919 [cs]
SYNFAC-EDIT: Synthetic Imitation Edit Feedback for Factual Alignment in Clinical Summarization [link]Paper   link   bibtex   abstract   1 download  
Mental-LLM: Leveraging Large Language Models for Mental Health Prediction via Online Text Data. Xu, X.; Yao, B.; Dong, Y.; Gabriel, S.; Yu, H.; Hendler, J.; Ghassemi, M.; Dey, A. K.; and Wang, D. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 8(1): 1–32. March 2024.
Mental-LLM: Leveraging Large Language Models for Mental Health Prediction via Online Text Data [link]Paper   doi   link   bibtex   abstract  
UMass-BioNLP at MEDIQA-M3G 2024: DermPrompt – A Systematic Exploration of Prompt Engineering with GPT-4V for Dermatological Diagnosis. Vashisht, P.; Lodha, A.; Maddipatla, M.; Yao, Z.; Mitra, A.; Yang, Z.; Wang, J.; Kwon, S.; and Yu, H. May 2024. arXiv:2404.17749 [cs]
UMass-BioNLP at MEDIQA-M3G 2024: DermPrompt – A Systematic Exploration of Prompt Engineering with GPT-4V for Dermatological Diagnosis [link]Paper   link   bibtex   abstract  
Synth-SBDH: A Synthetic Dataset of Social and Behavioral Determinants of Health for Clinical Text. Mitra, A.; Druhl, E.; Goodwin, R.; and Yu, H. June 2024. arXiv:2406.06056 [cs]
Synth-SBDH: A Synthetic Dataset of Social and Behavioral Determinants of Health for Clinical Text [link]Paper   link   bibtex   abstract  
ReadCtrl: Personalizing text generation with readability-controlled instruction learning. Tran, H.; Yao, Z.; Li, L.; and Yu, H. June 2024. arXiv:2406.09205 [cs]
ReadCtrl: Personalizing text generation with readability-controlled instruction learning [link]Paper   link   bibtex   abstract  
A Psychology-based Unified Dynamic Framework for Curriculum Learning. Meng, G.; Zeng, Q.; Lalor, J. P.; and Yu, H. August 2024. arXiv:2408.05326 [cs]
A Psychology-based Unified Dynamic Framework for Curriculum Learning [link]Paper   link   bibtex   abstract  
Large Language Model-based Role-Playing for Personalized Medical Jargon Extraction. Lim, J. H.; Kwon, S.; Yao, Z.; Lalor, J. P.; and Yu, H. August 2024. arXiv:2408.05555 [cs]
Large Language Model-based Role-Playing for Personalized Medical Jargon Extraction [link]Paper   link   bibtex   abstract  
ODD: A Benchmark Dataset for the Natural Language Processing based Opioid Related Aberrant Behavior Detection. Kwon, S.; Wang, X.; Liu, W.; Druhl, E.; Sung, M. L.; Reisman, J. I.; Li, W.; Kerns, R. D.; Becker, W.; and Yu, H. In June 2024. arXiv Number: arXiv:2307.02591 arXiv:2307.02591 [cs]
ODD: A Benchmark Dataset for the Natural Language Processing based Opioid Related Aberrant Behavior Detection [link]Paper   doi   link   bibtex   abstract  
  2023 (22)
An Investigation of the Representation of Social Determinants of Health in the UMLS. Rawat, B. P. S.; Keating, H.; Goodwin, R.; Druhl, E.; and Yu, H. AMIA Annual Symposium Proceedings, 2022: 912–921. April 2023.
An Investigation of the Representation of Social Determinants of Health in the UMLS [link]Paper   link   bibtex   abstract   1 download  
H4H: A Comprehensive Repository of Housing Resources for Homelessness. Osebe, S.; Tsai, J.; and Hong, Y. AMIA Summits on Translational Science Proceedings, 2023: 427–437. June 2023.
H4H: A Comprehensive Repository of Housing Resources for Homelessness [link]Paper   link   bibtex   abstract   1 download  
Multi-label Few-shot ICD Coding as Autoregressive Generation with Prompt. Yang, Z.; Kwon, S.; Yao, Z.; and Yu, H. Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence, 37(4): 5366–5374. June 2023.
Multi-label Few-shot ICD Coding as Autoregressive Generation with Prompt [link]Paper   doi   link   bibtex   abstract  
Evaluating the Efficacy of NoteAid on EHR Note Comprehension among US Veterans through Amazon Mechanical Turk. Lalor, J. P.; Wu, H.; Mazor, K. M.; and Yu, H. International journal of medical informatics, 172: 105006. April 2023.
Evaluating the Efficacy of NoteAid on EHR Note Comprehension among US Veterans through Amazon Mechanical Turk [link]Paper   doi   link   bibtex  
Associations Between Natural Language Processing–Enriched Social Determinants of Health and Suicide Death Among US Veterans. Mitra, A.; Pradhan, R.; Melamed, R. D.; Chen, K.; Hoaglin, D. C.; Tucker, K. L.; Reisman, J. I.; Yang, Z.; Liu, W.; Tsai, J.; and Yu, H. JAMA Network Open, 6(3). March 2023. Publisher: American Medical Association
Associations Between Natural Language Processing–Enriched Social Determinants of Health and Suicide Death Among US Veterans [link]Paper   doi   link   bibtex   abstract  
Intentional Self-Harm Among US Veterans With Traumatic Brain Injury or Posttraumatic Stress Disorder: Retrospective Cohort Study From 2008 to 2017. Rawat, B. P. S.; Reisman, J.; Pogoda, T. K; Liu, W.; Rongali, S.; Aseltine Jr, R. H; Chen, K.; Tsai, J.; Berlowitz, D.; Yu, H.; and Carlson, K. F JMIR Public Health and Surveillance, 9: e42803. July 2023.
Intentional Self-Harm Among US Veterans With Traumatic Brain Injury or Posttraumatic Stress Disorder: Retrospective Cohort Study From 2008 to 2017 [link]Paper   doi   link   bibtex   abstract  
Context Variance Evaluation of Pretrained Language Models for Prompt-based Biomedical Knowledge Probing. Yao, Z.; Cao, Y.; Yang, Z.; and Yu, H. AMIA Summits on Translational Science Proceedings, 2023: 592–601. June 2023.
Context Variance Evaluation of Pretrained Language Models for Prompt-based Biomedical Knowledge Probing [link]Paper   link   bibtex   abstract  
Extracting Biomedical Factual Knowledge Using Pretrained Language Model and Electronic Health Record Context. Yao, Z.; Cao, Y.; Yang, Z.; Deshpande, V.; and Yu, H. AMIA Annual Symposium Proceedings, 2022: 1188–1197. April 2023.
Extracting Biomedical Factual Knowledge Using Pretrained Language Model and Electronic Health Record Context [link]Paper   link   bibtex   abstract   1 download  
TransformEHR: transformer-based encoder-decoder generative model to enhance prediction of disease outcomes using electronic health records. Yang, Z.; Mitra, A.; Liu, W.; Berlowitz, D.; and Yu, H. Nature Communications, 14: 7857. November 2023.
TransformEHR: transformer-based encoder-decoder generative model to enhance prediction of disease outcomes using electronic health records [link]Paper   doi   link   bibtex   abstract  
NoteChat: A Dataset of Synthetic Doctor-Patient Conversations Conditioned on Clinical Notes. Wang, J.; Yao, Z.; Yang, Z.; Zhou, H.; Li, R.; Wang, X.; Xu, Y.; and Yu, H. October 2023. Number: arXiv:2310.15959 arXiv:2310.15959 [cs]
NoteChat: A Dataset of Synthetic Doctor-Patient Conversations Conditioned on Clinical Notes [link]Paper   link   bibtex   abstract  
Performance of Multimodal GPT-4V on USMLE with Image: Potential for Imaging Diagnostic Support with Explanations. Yang, Z.; Yao, Z.; Tasmin, M.; Vashisht, P.; Jang, W. S.; Ouyang, F.; Wang, B.; Berlowitz, D.; and Yu, H. November 2023. Pages: 2023.10.26.23297629
Performance of Multimodal GPT-4V on USMLE with Image: Potential for Imaging Diagnostic Support with Explanations [link]Paper   doi   link   bibtex   abstract  
SELF-EXPLAIN: Teaching Large Language Models to Reason Complex Questions by Themselves. Zhao, J.; Yao, Z.; Yang, Z.; and Yu, H. November 2023. Number: arXiv:2311.06985 arXiv:2311.06985 [cs] R0-FoMo: Workshop on Robustness of Few-shot and Zero-shot Learning in Foundation Models at NeurIPS 2023.
SELF-EXPLAIN: Teaching Large Language Models to Reason Complex Questions by Themselves [link]Paper   link   bibtex   abstract  
EHRTutor: Enhancing Patient Understanding of Discharge Instructions. Zhang, Z.; Yao, Z.; Zhou, H.; ouyang , F.; and Yu, H. October 2023. To appear in NeurIPS'23 Workshop on Generative AI for Education (GAIED), December, New Orleans
EHRTutor: Enhancing Patient Understanding of Discharge Instructions [link]Paper   doi   link   bibtex   abstract  
Synthetic Imitation Edit Feedback for Factual Alignment in Clinical Summarization. Mishra, P.; Yao, Z.; Chen, S.; Wang, B.; Mittal, R.; and Yu, H. October 2023. NeurIPS 2023 Workshop SyntheticData4ML Accepted
Synthetic Imitation Edit Feedback for Factual Alignment in Clinical Summarization [link]Paper   link   bibtex   abstract  
Improving Summarization with Human Edits. Yao, Z.; Schloss, B. J.; and Selvaraj, S. P. December 2023. EMNLP 2023
Improving Summarization with Human Edits [link]Paper   link   bibtex   abstract  
PaniniQA: Enhancing Patient Education Through Interactive Question Answering. Cai, P.; Yao, Z.; Liu, F.; Wang, D.; Reilly, M.; Zhou, H.; Li, L.; Cao, Y.; Kapoor, A.; Bajracharya, A.; Berlowitz, D.; and Yu, H. Transactions of the Association for Computational Linguistics. August 2023. Equal contributions for the first two authors.
PaniniQA: Enhancing Patient Education Through Interactive Question Answering [link]Paper   link   bibtex   abstract  
Revisiting the Architectures like Pointer Networks to Efficiently Improve the Next Word Distribution, Summarization Factuality, and Beyond. Chang, H.; Yao, Z.; Gon, A.; Yu, H.; and McCallum, A. July 2023. ACL 2023, equal contribution from the first two authors.
Revisiting the Architectures like Pointer Networks to Efficiently Improve the Next Word Distribution, Summarization Factuality, and Beyond [link]Paper   link   bibtex   abstract  
Automated identification of eviction status from electronic health record notes. Yao, Z.; Tsai, J.; Liu, W.; Levy, D. A; Druhl, E.; Reisman, J. I; and Yu, H. Journal of the American Medical Informatics Association,ocad081. May 2023.
Automated identification of eviction status from electronic health record notes [link]Paper   doi   link   bibtex   abstract  
Buprenorphine use and courses of care for opioid use disorder treatment within the Veterans Health Administration. Gordon, A. J.; Saxon, A. J.; Kertesz, S.; Wyse, J. J.; Manhapra, A.; Lin, L. A.; Chen, W.; Hansen, J.; Pinnell, D.; Huynh, T.; Baylis, J. D.; Cunningham, F. E.; Ghitza, U. E.; Bart, G.; Yu, H.; and Sauer, B. C. Drug and Alcohol Dependence, 248: 109902. July 2023.
Buprenorphine use and courses of care for opioid use disorder treatment within the Veterans Health Administration [link]Paper   doi   link   bibtex   abstract  
Vision Meets Definitions: Unsupervised Visual Word Sense Disambiguation Incorporating Gloss Information. Kwon, S.; Garodia, R.; Lee, M.; Yang, Z.; and Yu, H. In Toronto Canada, July 2023. ACL 2023
link   bibtex  
Generating User-Engaging News Headlines. Cai, P.; Song, K.; Cho, S.; Wang, H.; Wang, X.; Yu, H.; Liu, F.; and Yu, D. In Toronto, Canada, July 2023. ACL 2023
link   bibtex  
Web Information Extraction for Social Good: Food Pantry Answering As an Example. Chen, H.; and Yu, H. In Austin, TX, May 2023. ACM The Web Conference 2023, Austin TX
doi   link   bibtex   abstract  
  2022 (21)
ScAN: Suicide Attempt and Ideation Events Dataset. Rawat, B. P. S.; Kovaly, S.; Pigeon, W. R.; and Yu, H. Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting, 2022: 1029–1040. July 2022.
ScAN: Suicide Attempt and Ideation Events Dataset [link]Paper   doi   link   bibtex   abstract   1 download  
Knowledge Injected Prompt Based Fine-tuning for Multi-label Few-shot ICD Coding. Yang, Z.; Wang, S.; Rawat, B. P. S.; Mitra, A.; and Yu, H. Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing, 2022: 1767. December 2022. Publisher: NIH Public Access
Knowledge Injected Prompt Based Fine-tuning for Multi-label Few-shot ICD Coding [link]Paper   link   bibtex   abstract  
Learning as Conversation: Dialogue Systems Reinforced for Information Acquisition. Cai, P.; Wan, H.; Liu, F.; Yu, M.; Yu, H.; and Joshi, S. In Carpuat, M.; de Marneffe, M.; and Meza Ruiz, I. V., editor(s), Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 4781–4796, Seattle, United States, July 2022. Association for Computational Linguistics
Learning as Conversation: Dialogue Systems Reinforced for Information Acquisition [link]Paper   doi   link   bibtex   abstract  
Generation of Patient After-Visit Summaries to Support Physicians. Cai, P.; Liu, F.; Bajracharya, A.; Sills, J.; Kapoor, A.; Liu, W.; Berlowitz, D.; Levy, D.; Pradhan, R.; and Yu, H. In Proceedings of the 29th International Conference on Computational Linguistics, pages 6234–6247, Gyeongju, Republic of Korea, October 2022. International Committee on Computational Linguistics
Generation of Patient After-Visit Summaries to Support Physicians [link]Paper   link   bibtex   abstract  
Enhancing the prediction of disease outcomes using electronic health records and pretrained deep learning models. Yang, Z.; Liu, W.; Berlowitz, D.; and Yu, H. December 2022. arXiv:2212.12067 [cs]
Enhancing the prediction of disease outcomes using electronic health records and pretrained deep learning models [link]Paper   doi   link   bibtex   abstract  
Geographic Disparities in Prevalence of Opioid Use Disorders in US Veterans. Li, W.; Leon, C.; Liu, W.; Sung, M. L.; Kerns, R. D.; Becker, W. C.; and Yu, H. In Boston MA, November 2022. APHA 2022 Annual Meeting and Expo
link   bibtex  
Prevalence of Frailty and Associations with Oral Anticoagulant Prescribing in Atrial Fibrillation. Sanghai, S. R.; Liu, W.; Wang, W.; Rongali, S.; Orkaby, A. R.; Saczynski, J. S.; Rose, A. J.; Kapoor, A.; Li, W.; Yu, H.; and McManus, D. D. Journal of General Internal Medicine, 37(4): 730–736. March 2022.
Prevalence of Frailty and Associations with Oral Anticoagulant Prescribing in Atrial Fibrillation [link]Paper   doi   link   bibtex   abstract  
Using data science to improve outcomes for persons with opioid use disorder. Hayes, C. J.; Cucciare, M. A.; Martin, B. C.; Hudson, T. J.; Bush, K.; Lo-Ciganic, W.; Yu, H.; Charron, E.; and Gordon, A. J. Substance Abuse, 43(1): 956–963. 2022.
Using data science to improve outcomes for persons with opioid use disorder [link]Paper   doi   link   bibtex   abstract  
An Investigation of Social Determinants of Health in UMLS. Rawat, B. P. S.; and Yu, H. In Houston TX USA, May 2022. AMIA Clinical Informatics 2022
link   bibtex  
Generating Coherent Narratives with Subtopic Planning to Answer How-to Questions. Cai, P.; Yu, M.; Liu, F.; and Yu, H. In Abu Dhabi, December 2022. The GEM Workshop at EMNLP 2022
link   bibtex  
UMass A&P: An Assessment and Plan Reasoning System of UMass in the 2022 N2C2 Challenge. Kwon, S.; Yang, Z.; and Yu, H. November 2022. 2022 n2c2 Workshop, Washington DC
link   bibtex  
Racial differences in receipt of medications for opioid use disorder before and during the COVID-19 pandemic in the Veterans Health Administration. Sung, M. L.; Li, W.; León, C.; Reisman, J.; Liu, W.; Kerns, R. D.; Yu, H.; and Becker, W. C. November 2022. APHA 2022 Annual Meeting and Expo, Boston MA
link   bibtex  
Using Machine Learning to Predict Opioid Overdose Using Electronic Health Record. Wang, X.; Li, R.; Druhl, E.; Li, W.; Sung, M. L.; Kerns, R. D.; Becker, W. C.; and Yu, H. November 2022. APHA 2022 Annual Meeting and Expo, Boston MA
link   bibtex  
Automatically Detecting Opioid-Related Aberrant Behaviors from Electronic Health Records. Wang, X.; Li, R.; Lingeman, J. M.; Druhl, E.; Li, W.; Sung, M. L.; Kerns, R. D.; Becker, W. C.; and Yu, H. November 2022. APHA 2022 Annual Meeting and Expo, Boston MA
link   bibtex  
Pretraining of Patient Representations On Structured Electronic Health Records for Patient Outcome Prediction: case study as self-harm screening tool. Yang, Z.; and Hong, Y. In Washington DC USA, June 2022. ARM2022
link   bibtex  
SBDH and Suicide: A Multi-Task Learning Framework for SBDH Detection in Electronic Health Records Using NLP. Mitra, A.; Rawat, B. P. S.; Druhl, E. B.; Keating, H.; Goodwin, R.; Hu, W.; Liu, W.; Tsai, J.; Smelson, D. A.; and Yu, H. In Washington DC USA, June 2022. ARM 2022
link   bibtex  
Studying Association of Traumatic Brain Injury and Posttraumatic Stress Disorder Diagnoses with Hospitalized Self-Harm Among US Veterans, 2008-2017. Rawat, B. P. S.; Reisman, J.; Rongali, S.; Liu, W.; Yu, H.; and Carlson, K. In Washington DC USA, June 2022. ARM 2022 (Poster)
link   bibtex  
NLP and Annie App for Social Determinants of Health. Mahapatra, S.; Chen, H.; Tsai, J.; and Yu, H. In Houston TX USA, May 2022. AMIA Clinical Informatics 2022
link   bibtex  
EASE: A Tool to Extract Social Determinants of Health from Electronic Health Records. Rawat, B. P. S.; and Yu, H. In Houston TX USA, May 2022. AMIA Clinical Informatics 2022 (System Demo)
link   bibtex  
The association of prescribed long-acting versus short-acting opioids and mortality among older adults. Sung, M.; Smirnova, J.; Li, W.; Liu, W.; Kerns, R. D.; Reisman, J. I.; Yu, H.; and Becker, W. C. In Society of General Internal Medicine Annual National Meeting, Orlando, Florida, USA, April 2022.
link   bibtex  
EHR Cohort Development Using Natural Language Processing For Identifying Symptoms Of Alzheimer's Disease. Yu, H.; Mitra, A.; Keating, H.; Liu, W.; Hu, W.; Xia, W.; Morin, P.; Berlowitz, D. R.; Bray, M.; Monfared, A.; and Zhang, Q. In Barcelona, Spain (Online), March 2022. AD/PD 2022
link   bibtex  
  2021 (9)
MIMIC-SBDH: A Dataset for Social and Behavioral Determinants of Health. Ahsan, H.; Ohnuki, E.; Mitra, A.; and Yu, H. Proceedings of machine learning research, 149: 391–413. August 2021.
MIMIC-SBDH: A Dataset for Social and Behavioral Determinants of Health [link]Paper   link   bibtex   abstract  
Risk Factors Associated With Nonfatal Opioid Overdose Leading to Intensive Care Unit Admission: A Cross-sectional Study. Mitra, A.; Ahsan, H.; Li, W.; Liu, W.; Kerns, R. D.; Tsai, J.; Becker, W.; Smelson, D. A.; and Yu, H. JMIR medical informatics, 9(11): e32851. November 2021.
doi   link   bibtex   abstract  
Relation Classification for Bleeding Events From Electronic Health Records Using Deep Learning Systems: An Empirical Study. Mitra, A.; Rawat, B. P. S.; McManus, D. D.; and Yu, H. JMIR medical informatics, 9(7): e27527. July 2021.
doi   link   bibtex   abstract  
Guideline-discordant dosing of direct-acting oral anticoagulants in the veterans health administration. Rose, A. J.; Lee, J. S.; Berlowitz, D. R.; Liu, W.; Mitra, A.; and Yu, H. BMC health services research, 21(1): 1351. December 2021.
doi   link   bibtex   abstract  
Evaluating the Effectiveness of NoteAid in a Community Hospital Setting: Randomized Trial of Electronic Health Record Note Comprehension Interventions With Patients. Lalor, J. P.; Hu, W.; Tran, M.; Wu, H.; Mazor, K. M.; and Yu, H. Journal of Medical Internet Research, 23(5): e26354. May 2021.
doi   link   bibtex   abstract  
SBDH and Suicide: A Multi-task Learning Framework for SBDH in Electronic Health Records. Mitra, A.; Rawat, B. P. S.; Druhl, E.; Keating, H.; Goodwin, R.; Hu, W.; Liu, W.; Tsai, J.; Smelson, D. A.; and Yu, H. In Online, October 2021. SciNLP 2021
link   bibtex  
Membership Inference Attack Susceptibility of Clinical Language Models. Jagannatha, A.; Rawat, B. P. S.; and Yu, H. CoRR, abs/2104.08305. 2021. arXiv: 2104.08305
Membership Inference Attack Susceptibility of Clinical Language Models [link]Paper   link   bibtex   abstract  
Improving Formality Style Transfer with Context-Aware Rule Injection. Yao, Z.; and Yu, H. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1561–1570, Online, August 2021. Association for Computational Linguistics
Improving Formality Style Transfer with Context-Aware Rule Injection [link]Paper   doi   link   bibtex   abstract  
Epinoter: A Natural Language Processing Tool for Epidemiological Studies. Liu, W.; Li, F.; Jin, Y.; Granillo, E.; Yarzebski, J.; Li, W.; and Yu, H. In Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies, volume 5, pages 754–761, February 2021.
link   bibtex  
  2020 (15)
Generating Accurate Electronic Health Assessment from Medical Graph. Yang, Z.; and Yu, H. In Cohn, T.; He, Y.; and Liu, Y., editor(s), Findings of the Association for Computational Linguistics: EMNLP 2020, pages 3764–3773, Online, November 2020. Association for Computational Linguistics
Generating Accurate Electronic Health Assessment from Medical Graph [link]Paper   doi   link   bibtex   abstract  
Inferring ADR causality by predicting the Naranjo Score from Clinical Notes. Rawat, B. P. S.; Jagannatha, A.; Liu, F.; and Yu, H. In AMIA Fall Symposium, pages 1041–1049, 2020.
Inferring ADR causality by predicting the Naranjo Score from Clinical Notes [link]Paper   link   bibtex   abstract  
Calibrating Structured Output Predictors for Natural Language Processing. Jagannatha, A.; and Yu, H. In 2020 Annual Conference of the Association for Computational Linguistics (ACL), volume Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 2078–2092, July 2020. NIHMSID: NIHMS1661932
Calibrating Structured Output Predictors for Natural Language Processing. [link]Paper   doi   link   bibtex   abstract  
Conversational machine comprehension: a literature review. Gupta, S.; Rawat, B. P. S.; and Yu, H. arXiv preprint arXiv:2006.00671,2739–2753. December 2020. COLING 2020
Conversational machine comprehension: a literature review [link]Paper   doi   link   bibtex   abstract  
Bleeding Entity Recognition in Electronic Health Records: A Comprehensive Analysis of End-to-End Systems. Mitra, A.; Rawat, B. P. S.; McManus, D.; Kapoor, A.; and Yu, H. In AMIA Annu Symp Proc, pages 860–869, 2020.
Bleeding Entity Recognition in Electronic Health Records: A Comprehensive Analysis of End-to-End Systems [link]Paper   link   bibtex   abstract  
Neural Multi-Task Learning for Adverse Drug Reaction Extraction. Liu, F.; Zheng, X.; Yu, H.; and Tjia, J. AMIA ... Annual Symposium proceedings. AMIA Symposium, 2020: 756–762. 2020.
Neural Multi-Task Learning for Adverse Drug Reaction Extraction [pdf]Paper   link   bibtex   abstract  
BENTO: A Visual Platform for Building Clinical NLP Pipelines Based on CodaLab. Jin, Y.; Li, F.; and Yu, H. In 2020 Annual Conference of the Association for Computational Linguistics (ACL), pages 95–100, July 2020. NIHMSID: NIHMS1644629
BENTO: A Visual Platform for Building Clinical NLP Pipelines Based on CodaLab. [link]Paper   doi   link   bibtex   abstract  
ICD Coding from Clinical Text Using Multi-Filter Residual Convolutional Neural Network. Li, F.; and Yu, H. In The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), pages 8180–8187, New York City, New York, February 2020.
doi   link   bibtex  
Improved Pretraining for Domain-specific Contextual Embedding Models. Rongali, S.; Jagannatha, A.; Rawat, B. P. S.; and Yu, H. CoRR, abs/2004.02288. 2020. arXiv: 2004.02288
Improved Pretraining for Domain-specific Contextual Embedding Models [link]Paper   link   bibtex  
Neural data-to-text generation with dynamic content planning. Chen, K.; Li, F.; Hu, B.; Peng, W.; Chen, Q.; Yu, H.; and Xiang, Y. Knowledge-Based Systems,106610. November 2020.
Neural data-to-text generation with dynamic content planning [link]Paper   doi   link   bibtex   abstract  
Generating Medical Assessments Using a Neural Network Model: Algorithm Development and Validation. Hu, B.; Bajracharya, A.; and Yu, H. JMIR Medical Informatics, 8(1): e14971. 2020. Company: JMIR Medical Informatics Distributor: JMIR Medical Informatics Institution: JMIR Medical Informatics Label: JMIR Medical Informatics Publisher: JMIR Publications Inc., Toronto, Canada
Generating Medical Assessments Using a Neural Network Model: Algorithm Development and Validation [link]Paper   doi   link   bibtex   abstract  
Dynamic Data Selection for Curriculum Learning via Ability Estimation. Lalor, J. P.; and Yu, H. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 545–555, Online, November 2020. Association for Computational Linguistics
Dynamic Data Selection for Curriculum Learning via Ability Estimation [link]Paper   link   bibtex   abstract  
Neural Data-to-Text Generation with Dynamic Content Planning. Chen, K.; Li, F.; Hu, B.; Peng, W.; Chen, Q.; and Yu, H. arXiv:2004.07426 [cs]. April 2020. arXiv: 2004.07426
Neural Data-to-Text Generation with Dynamic Content Planning [link]Paper   link   bibtex   abstract  
BENTO: A Visual Platform for Building Clinical NLP Pipelines Based on CodaLab. Jin, Y; Li, F; and Yu, H In AMIA Fall Symposium, 2020.
link   bibtex  
Learning Latent Space Representations to Predict Patient Outcomes: Model Development and Validation. Rongali, S.; Rose, A. J.; McManus, D. D.; Bajracharya, A. S.; Kapoor, A.; Granillo, E.; and Yu, H. Journal of Medical Internet Research, 22(3): e16374. 2020. Company: Journal of Medical Internet Research Distributor: Journal of Medical Internet Research Institution: Journal of Medical Internet Research Label: Journal of Medical Internet Research Publisher: JMIR Publications Inc., Toronto, Canada
Learning Latent Space Representations to Predict Patient Outcomes: Model Development and Validation [link]Paper   doi   link   bibtex   abstract  
  2019 (11)
Improving electronic health record note comprehension with NoteAid: randomized trial of electronic health record note comprehension interventions with crowdsourced workers. Lalor, J. P.; Woolf, B.; and Yu, H. Journal of Medical Internet Research, 21(1): e10793. 2019.
Improving electronic health record note comprehension with NoteAid: randomized trial of electronic health record note comprehension interventions with crowdsourced workers [link]Paper   doi   link   bibtex   abstract  
Fine-Tuning Bidirectional Encoder Representations From Transformers (BERT)–Based Models on Large-Scale Electronic Health Record Notes: An Empirical Study. Li, F.; Jin, Y.; Liu, W.; Rawat, B. P. S.; Cai, P.; and Yu, H. JMIR Medical Informatics, 7(3): e14830. September 2019.
Fine-Tuning Bidirectional Encoder Representations From Transformers (BERT)–Based Models on Large-Scale Electronic Health Record Notes: An Empirical Study [link]Paper   doi   link   bibtex  
Detecting Hypoglycemia Incidents Reported in Patients’ Secure Messages: Using Cost-Sensitive Learning and Oversampling to Reduce Data Imbalance. Chen, J.; Lalor, J.; Liu, W.; Druhl, E.; Granillo, E.; Vimalananda, V. G; and Yu, H. Journal of Medical Internet Research, 21(3). March 2019.
Detecting Hypoglycemia Incidents Reported in Patients’ Secure Messages: Using Cost-Sensitive Learning and Oversampling to Reduce Data Imbalance [link]Paper   doi   link   bibtex   abstract  
Automatic Detection of Hypoglycemic Events From the Electronic Health Record Notes of Diabetes Patients: Empirical Study. Jin, Y.; Li, F.; Vimalananda, V. G.; and Yu, H. JMIR Medical Informatics, 7(4): e14340. 2019.
Automatic Detection of Hypoglycemic Events From the Electronic Health Record Notes of Diabetes Patients: Empirical Study [link]Paper   doi   link   bibtex   abstract  
Learning to detect and understand drug discontinuation events from clinical narratives. Liu, F.; Pradhan, R.; Druhl, E.; Freund, E.; Liu, W.; Sauer, B. C.; Cunningham, F.; Gordon, A. J.; Peters, C. B.; and Yu, H. Journal of the American Medical Informatics Association, 26(10): 943–951. October 2019.
Learning to detect and understand drug discontinuation events from clinical narratives [link]Paper   doi   link   bibtex   abstract  
Overview of the First Natural Language Processing Challenge for Extracting Medication, Indication, and Adverse Drug Events from Electronic Health Record Notes (MADE 1.0). Jagannatha, A.; Liu, F.; Liu, W.; and Yu, H. Drug Safety, (1): 99–111. January 2019.
doi   link   bibtex   abstract  
Naranjo Question Answering using End-to-End Multi-task Learning Model. Rawat, B. P; Li, F.; and Yu, H. 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD),2547–2555. 2019.
doi   link   bibtex   abstract  
A neural abstractive summarization model guided with topic sentences. ICONIP. Chen, C.; Hu, B.; Chen, Q.; and Yu, H. In 2019.
link   bibtex  
An investigation of single-domain and multidomain medication and adverse drug event relation extraction from electronic health record notes using advanced deep learning models. Li, F.; and Yu, H. Journal of the American Medical Informatics Association, 26(7): 646–654. July 2019.
An investigation of single-domain and multidomain medication and adverse drug event relation extraction from electronic health record notes using advanced deep learning models [link]Paper   doi   link   bibtex   abstract  
Anticoagulant prescribing for non-valvular atrial fibrillation in the Veterans Health Administration. Rose, A.; Goldberg, R; McManus, D.; Kapoor, A; Wang, V; Liu, W; and Yu, H Journal of the American Heart Association. 2019.
doi   link   bibtex   abstract  
Learning Latent Parameters without Human Response Patterns: Item Response Theory with Artificial Crowds. Lalor, J. P.; Wu, H.; and Yu, H. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4240–4250, Hong Kong, China, November 2019. Association for Computational Linguistics NIHMSID: NIHMS1059054
Learning Latent Parameters without Human Response Patterns: Item Response Theory with Artificial Crowds [link]Paper   doi   link   bibtex   abstract  
  2018 (13)
Detecting Opioid-Related Aberrant Behavior using Natural Language Processing. Lingeman, J. M.; Wang, P.; Becker, W.; and Yu, H. AMIA Annual Symposium Proceedings, 2017: 1179–1185. April 2018.
Detecting Opioid-Related Aberrant Behavior using Natural Language Processing [link]Paper   link   bibtex   abstract  
A natural language processing system that links medical terms in electronic health record notes to lay definitions: system development using physician reviews. Chen, J.; Druhl, E.; Polepalli Ramesh, B.; Houston, T. K.; Brandt, C. A.; Zulman, D. M.; Vimalananda, V. G.; Malkani, S.; and Yu, H. Journal of Medical Internet Research, 20(1): e26. January 2018.
doi   link   bibtex   abstract  
Clinical Relation Extraction Toward Drug Safety Surveillance Using Electronic Health Record Narratives: Classical Learning Versus Deep Learning. Munkhdalai, T.; Liu, F.; and Yu, H. JMIR public health and surveillance, 4(2): e29. April 2018.
doi   link   bibtex   abstract  
A hybrid Neural Network Model for Joint Prediction of Presence and Period Assertions of Medical Events in Clinical Notes. Rumeng, L.; Abhyuday N, J.; and Hong, Y. AMIA Annual Symposium Proceedings, 2017: 1149–1158. April 2018.
A hybrid Neural Network Model for Joint Prediction of Presence and Period Assertions of Medical Events in Clinical Notes [link]Paper   link   bibtex   abstract  
Assessing Readability of Medical Documents: A Ranking Approach. Zheng, J.; and Yu, H The Journal of Medical Internet Research Medical Informatics. March 2018.
doi   link   bibtex   abstract  
Understanding Deep Learning Performance through an Examination of Test Set Difficulty: A Psychometric Case Study. Lalor, J.; Wu, H.; Munkhdalai, T.; and Yu, H. In EMNLP, 2018.
Understanding Deep Learning Performance through an Examination of Test Set Difficulty: A Psychometric Case Study [link]Paper   doi   link   bibtex   abstract  
Soft Label Memorization-Generalization for Natural Language Inference. Lalor, J.; Wu, H.; and Yu, H. In 2018.
Soft Label Memorization-Generalization for Natural Language Inference. [link]Paper   link   bibtex   abstract  
Sentence Simplification with Memory-Augmented Neural Networks. Vu, T.; Hu, B.; Munkhdalai, T.; and Yu, H. In North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2018.
doi   link   bibtex   abstract  
Recent Trends In Oral Anticoagulant Use and Post-Discharge Complications Among Atrial Fibrillation Patients With Acute Myocardial Infarction. Amartya Kundu; Kevin O ’Day; Darleen M. Lessard; Joel M. Gore1; Steven A. Lubitz; Hong Yu; Mohammed W. Akhter; Daniel Z. Fisher; Robert M. Hayward Jr.; Nils Henninger; Jane S. Saczynski; Allan J. Walkey; Alok Kapoor; Jorge Yarzebski; Robert J. Goldberg; and David D. McManus In 2018. Journal of Atrial Fibrillation
doi   link   bibtex   abstract  
ComprehENotes: An Instrument to Assess Patient EHR Note Reading Comprehension of Electronic Health Record Notes: Development and Validation. Lalor, J; Wu, H; Chen, L; Mazor, K; and Yu, H The Journal of Medical Internet Research. April 2018.
doi   link   bibtex   abstract  
Detecting Hypoglycemia Incidence from Patients’ Secure Messages. Chen, J; and Yu, H In 2018.
link   bibtex  
Extraction of Information Related to Adverse Drug Events from Electronic Health Record Notes: Design of an End-to-End Model Based on Deep Learning. Li, F.; Liu, W.; and Yu, H. JMIR medical informatics, 6(4): e12159. November 2018.
doi   link   bibtex   abstract  
Reference Standard Development to Train Natural Language Processing Algorithms to Detect Problematic Buprenorphine-Naloxone Therapy. Celena B Peters; Fran Cunningham; Adam Gordon; Hong Yu; Cedric Salone; Jessica Zacher; Ronald Carico; Jianwei Leng; Nikolh Durley; Weisong Liu; Chao-Chin Lu; Emily Druhl; Feifan Liu; and Brian C Sauer In VA Pharmacy Informatics Conference 2018, 2018.
Reference Standard Development to Train Natural Language Processing Algorithms to Detect Problematic Buprenorphine-Naloxone Therapy [link]Paper   link   bibtex  
  2017 (9)
Ranking medical terms to support expansion of lay language resources for patient comprehension of electronic health record notes: adapted distant supervision approach. Chen, J.; Jagannatha, A. N.; Fodeh, S. J.; and Yu, H. JMIR medical informatics, 5(4): e42. October 2017.
doi   link   bibtex   abstract  
Meta Networks. Munkhdalai, T.; and Yu, H. In ICML, volume 70, pages 2554–2563, Sydney, Australia, August 2017.
link   bibtex   abstract  
Neural Semantic Encoders. Munkhdalai, T; and Yu, H. In European Chapter of the Association for Computational Linguistics 2017 (EACL), volume 1, pages 397–407, April 2017.
Neural Semantic Encoders [pdf]Paper   link   bibtex   abstract  
CIFT: Crowd-Informed Fine-Tuning to Improve Machine Learning Ability. Lalor, J; Wu, H; and Yu, H In February 2017.
link   bibtex   abstract  
Assessing Electronic Health Record Readability. Zheng, J; and Yu, H In 2017.
link   bibtex  
Reasoning with memory augmented neural networks for language comprehension. Munkhdalai, T.; and Yu, H. 5th International Conference on Learning Representations (ICLR). 2017.
Reasoning with memory augmented neural networks for language comprehension. [link]Paper   link   bibtex   abstract  
Readability Formulas and User Perceptions of Electronic Health Records Difficulty: A Corpus Study. Zheng, J.; and Yu, H. Journal of Medical Internet Research, 19(3): e59. 2017.
Readability Formulas and User Perceptions of Electronic Health Records Difficulty: A Corpus Study [link]Paper   doi   link   bibtex   abstract  
Neural Tree Indexers for Text Understanding. Munkhdalai, T.; and Yu, H. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 11–21, Valencia, Spain, April 2017. Association for Computational Linguistics
Neural Tree Indexers for Text Understanding [link]Paper   link   bibtex   abstract  
Generating a Test of Electronic Health Record Narrative Comprehension with Item Response Theory. Lalor, J; Wu, H; Chen, L; Mazor, K; and Yu, H In November 2017.
link   bibtex   abstract  
  2016 (5)
Structured prediction models for RNN based sequence labeling in clinical text. Jagannatha, A. N.; and Yu, H. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, volume 2016, pages 856–865, November 2016.
link   bibtex   abstract  
RETAIN: An Interpretable Predictive Model for Healthcare using Reverse Time Attention Mechanism. Choi, E.; Bahadori, M. T.; Sun, J.; Kulas, J.; Schuetz, A.; and Stewart, W. In Advances in Neural Information Processing Systems, pages 3504–3512, 2016.
RETAIN: An Interpretable Predictive Model for Healthcare using Reverse Time Attention Mechanism [link]Paper   link   bibtex  
Learning to Rank Scientific Documents from the Crowd. Lingeman, J. M; and Yu, H. arXiv:1611.01400. November 2016.
Learning to Rank Scientific Documents from the Crowd [pdf]Paper   link   bibtex   abstract  
Learning for Biomedical Information Extraction: Methodological Review of Recent Advances. Liu, F.; Chen, J.; Jagannatha, A.; and Yu, H. arXiv:1606.07993. June 2016.
Learning for Biomedical Information Extraction: Methodological Review of Recent Advances [pdf]Paper   link   bibtex   abstract  
Citation Analysis with Neural Attention Models. Munkhdalai, M; Lalor, J; and Yu, H In Proceedings of the Seventh International Workshop on Health Text Mining and Information Analysis (LOUHI) ,, pages 69–77, Austin, TX, November 2016. Association for Computational Linguistics
Citation Analysis with Neural Attention Models [pdf]Paper   doi   link   bibtex  
  2015 (3)
Translating Electronic Health Record Notes from English to Spanish: A Preliminary Study. Liu, W.; Cai, S.; Balaji, R.; Chiriboga, G.; Knight, K.; and Yu, H. In ACL-IJCNLP, pages 134, Bei Jing, China, July 2015.
Translating Electronic Health Record Notes from English to Spanish: A Preliminary Study [pdf]Paper   doi   link   bibtex  
Figure-Associated Text Summarization and Evaluation. Polepalli Ramesh, B.; Sethi, R. J.; and Yu, H. PLOS ONE, 10(2): e0115671. February 2015.
Figure-Associated Text Summarization and Evaluation [link]Paper   doi   link   bibtex  
DeTEXT: A Database for Evaluating Text Extraction from Biomedical Literature Figures. Yin, X.; Yang, C.; Pei, W.; Man, H.; Zhang, J.; Learned-Miller, E.; and Yu, H. PLoS ONE, 10(5). May 2015.
DeTEXT: A Database for Evaluating Text Extraction from Biomedical Literature Figures [link]Paper   doi   link   bibtex   abstract  
  2014 (3)
Learning to Rank Figures within a Biomedical Article. Liu, F.; and Yu, H. PLoS ONE, 9(3): e61567. March 2014.
Learning to Rank Figures within a Biomedical Article [link]Paper   doi   link   bibtex   abstract  
Computational Approaches for Predicting Biomedical Research Collaborations. Zhang, Q.; and Yu, H. PLoS ONE, 9(11): e111795. November 2014.
Computational Approaches for Predicting Biomedical Research Collaborations [link]Paper   doi   link   bibtex   abstract  
Automatically Recognizing Medication and Adverse Event Information From Food and Drug Administration’s Adverse Event Reporting System Narratives. Polepalli Ramesh, B.; Belknap, S. M; Li, Z.; Frid, N.; West, D. P; and Yu, H. JMIR Medical Informatics, 2(1): e10. June 2014.
Automatically Recognizing Medication and Adverse Event Information From Food and Drug Administration’s Adverse Event Reporting System Narratives [link]Paper   doi   link   bibtex  
  2013 (2)
Systems for Improving Electronic Health Record Note Comprehension. Polepalli Ramesh, B.; and Yu, H. In ACM SIGIR Workshop on Health Search & Discovery, 2013.
Systems for Improving Electronic Health Record Note Comprehension [pdf]Paper   link   bibtex   abstract  
CiteGraph: A Citation Network System for MEDLINE Articles and Analysis. Qing, Z.; and Hong, Y. Studies in Health Technology and Informatics,832–836. 2013.
CiteGraph: A Citation Network System for MEDLINE Articles and Analysis [link]Paper   doi   link   bibtex   abstract  
  2012 (1)
Beyond Captions: Linking Figures with Abstract Sentences in Biomedical Articles. Bockhorst, J. P.; Conroy, J. M.; Agarwal, S.; O’Leary, D. P.; and Yu, H. PLoS ONE, 7(7): e39618. July 2012.
Beyond Captions: Linking Figures with Abstract Sentences in Biomedical Articles [link]Paper   doi   link   bibtex  
  2011 (7)
AskHERMES: An online question answering system for complex clinical questions. Cao, Y.; Liu, F.; Simpson, P.; Antieau, L.; Bennett, A.; Cimino, J. J; Ely, J.; and Yu, H. Journal of Biomedical Informatics, 44(2): 277–288. April 2011.
AskHERMES: An online question answering system for complex clinical questions [link]Paper   doi   link   bibtex   abstract  
BioN∅T: A searchable database of biomedical negated sentences. Agarwal, S.; Yu, H.; and Kohane, I. BMC Bioinformatics, 12(1): 420. 2011.
BioN∅T: A searchable database of biomedical negated sentences [link]Paper   doi   link   bibtex  
Toward automated consumer question answering: Automatically separating consumer questions from professional questions in the healthcare domain. Liu, F.; Antieau, L. D.; and Yu, H. Journal of Biomedical Informatics, 44(6): 1032–1038. December 2011.
Toward automated consumer question answering: Automatically separating consumer questions from professional questions in the healthcare domain [link]Paper   doi   link   bibtex   abstract  
Simple and efficient machine learning frameworks for identifying protein-protein interaction relevant articles and experimental methods used to study the interactions. Agarwal, S.; Liu, F.; and Yu, H. BMC Bioinformatics, 12(Suppl 8): S10. 2011.
Simple and efficient machine learning frameworks for identifying protein-protein interaction relevant articles and experimental methods used to study the interactions [link]Paper   doi   link   bibtex   abstract  
Parsing citations in biomedical articles using conditional random fields. Zhang, Q.; Cao, Y.; and Yu, H. Computers in Biology and Medicine, 41(4): 190–194. April 2011.
Parsing citations in biomedical articles using conditional random fields [link]Paper   doi   link   bibtex   abstract  
Figure Text Extraction in Biomedical Literature. Kim, D.; and Yu, H. PLoS ONE, 6(1): e15338. January 2011.
Figure Text Extraction in Biomedical Literature [link]Paper   doi   link   bibtex  
Automatic figure classification in bioscience literature. Kim, D.; Ramesh, B. P.; and Yu, H. Journal of Biomedical Informatics, 44(5): 848–858. October 2011.
Automatic figure classification in bioscience literature [link]Paper   doi   link   bibtex  
  2010 (4)
Lancet: a high precision medication event extraction system for clinical text. Li, Z.; Liu, F.; Antieau, L.; Cao, Y.; and Yu, H. Journal of the American Medical Informatics Association: JAMIA, 17(5): 563–567. October 2010.
Lancet: a high precision medication event extraction system for clinical text [link]Paper   doi   link   bibtex   abstract  
Identifying discourse connectives in biomedical text. Ramesh, B. P.; and Yu, H. AMIA ... Annual Symposium proceedings. AMIA Symposium, 2010: 657–661. November 2010.
Identifying discourse connectives in biomedical text [link]Paper   link   bibtex   abstract  
Biomedical negation scope detection with conditional random fields. Agarwal, S.; and Yu, H. Journal of the American Medical Informatics Association: JAMIA, 17(6): 696–701. November 2010. 00033 PMID: 20962133 PMCID: PMC3000754
Biomedical negation scope detection with conditional random fields [link]Paper   doi   link   bibtex   abstract  
Automatic Figure Ranking and User Interfacing for Intelligent Figure Search. Yu, H.; Liu, F.; and Ramesh, B. P. PLoS ONE, 5(10): e12983. October 2010.
Automatic Figure Ranking and User Interfacing for Intelligent Figure Search [link]Paper   doi   link   bibtex  
  2009 (5)
Using the Weighted Keyword Model to Improve Information Retrieval for Answering Biomedical Questions. Yu, H.; and Cao, Y. Summit on translational bioinformatics, 2009: 143. 2009.
link   bibtex   abstract  
Investigating and annotating the role of citation in biomedical full-text articles. Yu, H.; Agarwal, S.; and Frid, N. In Bioinformatics and Biomedicine Workshop, pages 308–313, November 2009. IEEE
Investigating and annotating the role of citation in biomedical full-text articles [link]Paper   doi   link   bibtex   abstract  
Evaluating the weighted-keyword model to improve clinical question answering. Cao, Y.; Ely, J.; and Yu, H. In Bioinformatics and Biomedicine Workshop, pages 331–335, November 2009. IEEE INSPEC Accession Number: 10975550
Evaluating the weighted-keyword model to improve clinical question answering [link]Paper   doi   link   bibtex   abstract  
Automatically classifying sentences in full-text biomedical articles into Introduction, Methods, Results and Discussion. Agarwal, S.; and Yu, H. Bioinformatics, 25(23): 3174–3180. December 2009.
Automatically classifying sentences in full-text biomedical articles into Introduction, Methods, Results and Discussion [link]Paper   doi   link   bibtex  
Are figure legends sufficient? Evaluating the contribution of associated text to biomedical figure comprehension. Yu, H.; Agarwal, S.; Johnston, M.; and Cohen, A. Journal of Biomedical Discovery and Collaboration, 4(1): 1. 2009.
Are figure legends sufficient? Evaluating the contribution of associated text to biomedical figure comprehension [link]Paper   doi   link   bibtex   abstract  
  2008 (1)
Translating biology: text mining tools that work. Cohen, K B.; Yu, H.; Bourne, P. E; and Hirschman, L. In Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, volume 13, pages 551, 2008. NIHMSID: NIHMS92147
Translating biology: text mining tools that work [pdf]Paper   link   bibtex  
  2007 (3)
Development, implementation, and a cognitive evaluation of a definitional question answering system for physicians. Yu, H.; Lee, M.; Kaufman, D.; Ely, J.; Osheroff, J. A.; Hripcsak, G.; and Cimino, J. Journal of Biomedical Informatics, 40(3): 236–251. June 2007.
Development, implementation, and a cognitive evaluation of a definitional question answering system for physicians [link]Paper   doi   link   bibtex  
Using MEDLINE as a knowledge source for disambiguating abbreviations and acronyms in full-text biomedical journal articles. Yu, H.; Kim, W.; Hatzivassiloglou, V.; and Wilbur, W. J. Journal of Biomedical Informatics, 40(2): 150–159. April 2007.
Using MEDLINE as a knowledge source for disambiguating abbreviations and acronyms in full-text biomedical journal articles [link]Paper   doi   link   bibtex   abstract  
The efficacy and safety of apixaban, an oral, direct factor Xa inhibitor, as thromboprophylaxis in patients following total knee replacement. Lassen, M. R.; Davidson, B. L.; Gallus, A.; Pineo, G.; Ansell, J.; and Deitchman, D. Journal of Thrombosis and Haemostasis, 5(12): 2368–2375. December 2007.
The efficacy and safety of apixaban, an oral, direct factor Xa inhibitor, as thromboprophylaxis in patients following total knee replacement [link]Paper   doi   link   bibtex   abstract  
  2006 (1)
The semantics of a definiendum constrains both the lexical semantics and the lexicosyntactic patterns in the definiens. Yu, H.; and Wei, Y. In Proceedings of the BioNLP Workshop on Linking Natural Language Processing and Biology at HLT-NAACL, pages 1–8, New York, USA, 2006.
The semantics of a definiendum constrains both the lexical semantics and the lexicosyntactic patterns in the definiens [link]Paper   link   bibtex  
  2004 (1)
Using MEDLINE as a knowledge source for disambiguating abbreviations in full-text biomedical journal articles. Yu, H.; Kim, W.; Hatzivassiloglou, V.; and John Wilbur, W In Computer-Based Medical Systems, 2004. CBMS 2004. Proceedings. 17th IEEE Symposium on, pages 27–32, June 2004. IEEE
doi   link   bibtex   abstract  
  2003 (1)
Extracting synonymous gene and protein terms from biological literature. Yu, H.; and Agichtein, E. Bioinformatics, 19(Suppl 1): i340–i349. July 2003.
Extracting synonymous gene and protein terms from biological literature [link]Paper   doi   link   bibtex   abstract  
  2001 (1)
Knowledge-based disambiguation of abbreviations. Yu, H. In Proceedings of the AMIA Symposium, pages 1067, 2001.
Knowledge-based disambiguation of abbreviations [pdf]Paper   link   bibtex  
  2000 (1)
A large scale, cross-disease family health history data set. Yu, H.; and Hripcsak, G. Proceedings of the AMIA Symposium,1162. 2000. PMC2243911
A large scale, cross-disease family health history data set [pdf]Paper   link   bibtex  
  1999 (1)
Representing genomic knowledge in the UMLS semantic network. Yu, H.; Friedman, C.; Rhzetsky, A.; and Kra, P. Proceedings of the AMIA Symposium,181. 1999.
Representing genomic knowledge in the UMLS semantic network. [link]Paper   link   bibtex   abstract   1 download  
  1988 (1)
Sensitivity and Specificity of Three Methods of Detecting Adverse Drug Reactions. Berry, L. L.; Segal, R.; Sherrin, T. P.; and Fudge, K. A. American Journal of Hospital Pharmacy, 45(7): 1534–1539. July 1988.
Sensitivity and Specificity of Three Methods of Detecting Adverse Drug Reactions [link]Paper   doi   link   bibtex   abstract  
  undefined (2)
Disparities in receipt of medications for opioid use disorder before and during the COVID-19 pandemic in the U.S. Veterans Health Administration. Sung, M. L.; Leon, C.; Reisman, J. I.; Gordon, K. S.; Kerns, R. D.; Li, W.; Liu, W.; Mitra, A.; Yu, H.; and Becker, W. C. Substance Use & Addiction Journal. . Revision in review, Dr. Sung and Dr. Leon are co-first author.
link   bibtex  
Occurrence of opioid related neurocognitive symptoms associated with long-term opioid therapy. Leon, C.; Sung, M. L.; Reisman, J. I; Liu, W.; Kerns, R. D.; Gordon, K. S.; Mitra, A.; Kwon, S.; Yu, H.; Becker, W. C.; and Li, W. Clinical Journal of Pain. . In review.
link   bibtex